Antigen specific anti-SPAS-1 CD8 T cell responses to in situ vaccination using irreversible electroporation (IRE) of prostate tumors

Introduction

Focal energy therapy (cryo, heat, and irreversible electroporation) reduces solid tumor burden while releasing antigenic tumor peptides that vaccinate the host. The prostatic adenocarcinoma SPAS-1 antigen is an immunogenic antigen associated with prostate tumors. The SPAS-1 ortholog SH3GLB2 (Fig. A) is over-expressed in immunogenic antigen associated with prostate tumors. The prostatic adenocarcinoma SPAS-1 antigen is an immunogenic antigen associated with prostate tumors. The antigenic tumor peptides that vaccinate the host. The immunopathology and tumor burden of this model.

Specific Aims

Aim 1: Characterization of changes in the number and phenotype of SPAS-1 antigen specific T cells following surgical resection or focal therapy with and without anti-CTLA4 monoclonal antibody.

Aim 2: Characterize T cell memory and secondary tumor burden after focal therapy or surgical resection combined with anti-CTLA4 immunotherapy.

Results

Table 1

<table>
<thead>
<tr>
<th>Histologic effects of thermal ablation modalities (radio-frequency, microwave ablation and irreversible electroporation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of damage</td>
</tr>
<tr>
<td>Act of damage</td>
</tr>
<tr>
<td>Protein denaturation</td>
</tr>
<tr>
<td>Blood flow</td>
</tr>
<tr>
<td>Connective tissue</td>
</tr>
<tr>
<td>Region of damage</td>
</tr>
<tr>
<td>HIC effects</td>
</tr>
</tbody>
</table>

IHC, immunohistochemical.

Conclusions

- IRE combined with anti-CTLA4 immunotherapy results in greater total numbers of SPAS-1 specific CD8 T cells and higher activation within this cell population, versus resection with anti-CTLA4 antibody.
- Protection against secondary tumor challenge is similar with both treatments.
- anti-CTLA4 titration studies may help to eliminate potential immunopathologies.
- Enrolling mice with ideal tumor volume for IRE treatment may help to optimize this model.

Acknowledgements

Thanks to: UMN Medical School, UMN Center for Immunology, UMN Medical Student Summer Research Program in Infection and Immunity, UMN Dept. of Biomedical Engineering, The Shimizu Lab, NIH T35 Research Training Grant, Dr. Dan Mueller.

References

