ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes

Graphical Abstract

Highlights

- ISRE reporter mouse tracks interferon (IFN) responses in vivo
- IFN responses largely limited to hematopoietic cells during infection
- High basal and induced IFN responses in Ly6C^hi inflammatory monocytes
- Ly6C^hi inflammatory monocyte development not dependent on IFNs

Authors

Melissa B. Uccellini, Adolfo García-Sastre

Correspondence

adolfo.garcia-sastre@mssm.edu

In Brief

Uccellini and García-Sastre create an ISRE reporter mouse and track interferon (IFN) responses in vivo in response to pathogen-associated molecular pattern (PAMP) stimulation and influenza infection. They find that IFN responses are highest in hematopoietic cells during infection. Specifically, Ly6C^hi inflammatory monocytes have high basal IFN responses that are further enhanced upon infection.
ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes

Melissa B. Uccellini1 and Adolfo Garcia-Sastre1,2,3,4,*
1Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
2Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
3Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
4Lead Contact
*Correspondence: adolfo.garcia-sastre@mssm.edu
https://doi.org/10.1016/j.celrep.2018.11.030

SUMMARY

Type I and type III interferons (IFNs) are critical for controlling viral infections. However, the precise dynamics of the IFN response have been difficult to define in vivo. Signaling through type I IFN receptors leads to interferon-stimulated response element (ISRE)-dependent gene expression and an antiviral state. As an alternative to tracking IFN, we used an ISRE-dependent reporter mouse to define the cell types, localization, and kinetics of IFN responding cells during influenza virus infection. We find that measurable IFN responses are largely limited to hematopoietic cells, which show a high sensitivity to IFN. Inflammatory monocytes display high basal IFN responses, which are enhanced upon infection and correlate with infection of these cells. We find that inflammatory monocyte development is independent of IFN signaling; however, IFN is critical for chemokine production and recruitment following infection. The data reveal a role for inflammatory monocytes in both basal IFN responses and responses to infection.

INTRODUCTION

Detection of virus by the innate immune system triggers the production of type I (α/β) and type III interferon (IFN) (λ), which serve as a critical first line of defense against infection. Ifnb1, and murine Ifna4 in certain cell types, are transcribed in an initial IRF3-dependent burst, triggering the production of IRF7, which leads to a subsequent secondary wave of transcription involving the other Ifna genes (Honda et al., 2005). IFN-α/β binds to the heterodimeric type I IFN receptor composed of IFNAR1 and IFNAR2, which is expressed on all nucleated cells. IFN-λ binds to the type III IFN receptor composed of IL-28Rα and IL-10Rβ. Expression of IL-28Rα is more restricted and thought to be mainly on epithelial cells (Pott et al., 2011; Sommereyns et al., 2008). Canonical signaling through both the type I and type III IFN receptors leads to the activation of JAK1 and TYK2, the phosphorylation of STAT1 and STAT2, and their binding to IRF9 to form interferon-stimulated gene factor 3 (ISGF3). Binding of ISGF3 to interferon-stimulated response elements (ISREs) leads to the activation of hundreds of IFN-stimulated genes (ISGs), which act through diverse mechanisms to limit viral replication and create an antiviral state. IFN-α/β can also signal through STAT1 homodimers, which bind to γ-activated sequences (GASs), through other STATs, and through the phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK) signaling pathways (Ivashkiv and Donlin, 2014). Besides its antiviral activity, IFN signaling has been associated with both pro- and anti-inflammatory activities, most likely reflecting cell-type-specific responses to IFN.

The importance of IFN in vivo was demonstrated by the high susceptibility of Ifnar1−/− mice to many viruses, supporting a critical role for type I IFN in limiting viral replication and dissemination (Müller et al., 1994). While IFN is critical for control of many viral infections, its role in influenza virus infection is less clear, likely due to a degree of redundancy between the functions of IFN-α/β and -λ, variation in mouse strains, and variation in viral strains. IFN can act at many different levels on a broad range of cell types to influence the outcome of influenza virus infection; appropriate amounts of IFN appear to be protective, while excessive amounts contribute to tissue damage (McNab et al., 2015). Both IFN-α/β and IFN-λ can induce the expression of Mx1, which is a primary restriction factor for influenza virus infection in mice (Mordstein et al., 2010). Most standard laboratory mouse strains lack expression of functional Mx1 (Staeheli et al., 1988), which has led to differing conclusions about the protective versus pathogenic functions of IFN during infection. However, in Mx-sufficient strains, a critical function of IFN is induction of Mx1, which cripples viral replication and subsequent downstream inflammation. Because of a degree of redundancy between type I and III IFN on cells that express both receptors, both Ifnar1−/− and Il28ra−/− mice show little phenotype on an Mx1-sufficient background; however, the absence of both receptors leads to significantly higher viral titers and enhanced susceptibility to mortality (Mordstein et al., 2008). Both IFN-α/β and IFN-λ can also act to induce the expression of other ISGs, including ISG15, PKR, PAI1, IFITM3, and IRF7, which act through a variety of mechanisms to limit viral replication (Ciancianelli et al., 2016). Type I IFN also plays a role in limiting the dissemination of certain strains of influenza virus. Most influenza virus strains require proteolytic cleavage of hemagglutinin by
trypsin-like proteases expressed in the lung; however, some human strains such as 1918, A/WSN/33, and highly pathogenic avian viruses can replicate independently of trypsin, allowing spread outside of the lung (Steinhauer, 1999). *Ifnar1<−/−* mice are more susceptible to these strains, suggesting that IFN-α/β can act in a manner that is not complemented by IFN-λ to limit viral dissemination (García-Sastre et al., 1998a; Salomon et al., 2007; Szretter et al., 2009). Both IFN-α/β and IFN-λ also play important roles in inducing chemokines that serve to recruit inflammatory cells to the site of infection (Rauch et al., 2013).

While IFN is critical for controlling viral infection, a lack of sensitive detection systems has limited our understanding of the precise mechanisms by which it functions *in vivo*. IFN can be quantified at the protein level by ELISA or bioassay; however, these assays have a low sensitivity. A recently described assay using single-molecule array digital ELISA technology shows a 5,000-fold increase in sensitivity over commercial ELISAs (Rodero et al., 2017). IFN can also be measured at the RNA level by RT-PCR or RNA sequencing (RNA-seq), methods that have a high sensitivity. Nevertheless, these methods do not provide information about the cell types producing IFN unless combined with cell sorting. To address this, a number of reporter mouse strains have been generated, including a mouse expressing YFP from an IRES in the *Ifnb1* gene (Scheu et al., 2008), a mouse with luciferase replacing the *Ifnb1* gene (Lienenklaus et al., 2009), and a mouse expressing GFP from an IRES in the *Ifna6* gene, which is expressed during the secondary wave of IFN production (Kumagai et al., 2007). During non-inflammatory conditions, thymic epithelial cells show high basal expression of the IFN-β reporter (Lienenklaus et al., 2009). Under infection conditions, these models have revealed different cellular sources of IFN. While the different studies used different markers to define cell populations, it appears that during systemic infection, plasmacytoid dendritic cells (pDCs) and macrophages in the spleen are the main IFN producers, whereas respiratory infection leads to IFN production mainly in macrophage subsets (Barbalat et al., 2009; Dresing et al., 2010; Goritzka et al., 2015; Jung et al., 2008; Kim et al., 2012; Scheu et al., 2008; Solodova et al., 2011). Reporter mice infected with influenza virus show strong tissue-specific IFN-β production associated with areas of active viral replication (Lienenklaus et al., 2009). IFN-β induction correlated with the ability of the virus to productively replicate in the lung (Kochs et al., 2009). The viral IFN antagonist protein NS1 plays an important role in delaying the expression of IFN-β and restricting the cell types that express it. Infection with wild-type (WT) strains leads to IFN production in cells of the macrophage/dendritic cell (DC) lineage, whereas mutant strains are able to induce IFN production in epithelial cells (Kallfass et al., 2013; Lienenklaus et al., 2009).

While these studies have revealed the IFN producing cells, many questions remain about the activity of IFN after secretion, including the extent to which it stays local or causes a systemic response under different conditions, the localizations, and cell types that respond, and the kinetics of the response. To address some of these questions, Pulverer created a bacterial artificial chromosome/clone (BAC) transgenic mouse that expresses luciferase under the control of the Mx2 promoter, which revealed a surprisingly strong IFN response in the liver (Pulverer et al., 2010). The luciferase reporter allows imaging on a whole animal level but is not amenable to tracking individual cells. Here, we have created a reporter mouse expressing GFP under the control of the endogenous Mx1 locus. Mx1 is induced by type I and III IFN, but not by type II IFN or other cytokines (Haller and Kochs, 2011), and is strictly controlled by ISGF3 binding to its ISRE and therefore serves as a reporter for the canonical IFN signaling pathway (Mordstein et al., 2010). Using this model, we find that during influenza virus infection, IFN responses remain locally confined, are delayed in terms of kinetics, and are largely restricted to hematopoietic cells. We also find a previously unreported role for monocytes in both high basal and induced IFN responses. Type I IFN has been suggested to be required for the generation and differentiation of Ly6C^{hi} monocytes (Seo et al., 2011). Here we show that both Ly6C^{hi} and Ly6C^{lo} monocytes are present in mice deficient for IFN signaling, although their recruitment is severely reduced as reported (Seo et al., 2011). Importantly, the monocyte chemokines CCL2 and CCL7 are ISGs and are not induced in the absence of IFN signaling, which likely accounts for the failure to recruit monocytes in the absence of IFN signaling.

RESULTS

Mx1^{gfp} Reporter Mice

In order to study the cells responding to IFN *in vivo*, we generated a reporter mouse expressing GFP under the control of the endogenous Mx1 locus. Because the C57BL/6 strain lacks a functional Mx1 gene (Staeheli et al., 1988), as do most inbred laboratory strains, inclusion of GFP does not have a functional impact on this strain. A GFP-ovalbumin (OVA) fusion protein was inserted into the Mx1 locus (Figure S1A). OVA epitopes were included to track T cell responses, which will be reported elsewhere. Correct integration of the construct into the Mx1 locus was confirmed (Figures S1B and S1C). To confirm IFN inducibility of the reporter, bone-marrow-derived macrophages from *Mx1^{gfp}* mice were stimulated with IFN or infected with virus and GFP expression was examined. As expected, *Mx1^{gfp}* macrophages expressed GFP following treatment with type I IFN or infection with influenza virus (Figure S1D). Infection with PR8ΔNS1 virus (Garcia-Sastre et al., 1998b) induced GFP expression in the larger proportion of cells than the WT virus (Figure S1D). In order to confirm that GFP expression faithfully reflected Mx1 expression, we performed intracellular staining for Mx1 and GFP in *Mx1^{gfp}/Mx1^{+/+}* heterozygous mice (from the B6.A2G-Mx1<sup>+/+<sup> congenic line); however, GFP fluorescence was lost upon permeabilization for staining (data not shown) as reported by others (Kalejta et al., 1997). We therefore injected *Mx1^{gfp}/Mx1⁺* mice intravenously (i.v.) with Poly(I:C) (PIC) and sorted GFP[−] and GFP⁺ cells from the spleen. *Mx1* expression was enriched in the GFP[−] cells relative to the GFP⁺ cells (Figure S1E). Overall the data confirm that the *Mx1^{gfp}* allele responds to IFN stimulation as expected.

To confirm that *Mx1^{gfp}* functioned as a reporter specifically for IFN signaling, we crossed the reporter line to mice deficient in Ifnar1 (type I IFN signaling deficient) or Stat2 (type I and type III IFN signaling deficient) and measured expression of GFP in the spleen after i.v. injection of PIC. GFP expression was completely lost in spleen cells from *Mx1^{gfp}/Ifnar1<−/−* and...
in Mx1^{Δp}/Stat2^{−/−} mice (Figures 1A and 1B), indicating that the reporter is specific for IFN signaling and that hematopoietic cell responses are completely dependent on type I IFN. The type I IFN receptor is thought to be expressed in all tissues and organs; however, expression of the type III IFN receptor is more restricted and thought to be mainly in epithelial cells (Pott et al., 2011; Sommereyns et al., 2008). To test the functionality of the reporter in response to type III IFN, we intranasally (i.n.) injected Mx1^{Δp}, Mx1^{Δp}/Ifnar1^{−/−}, and Mx1^{Δp}/Stat2^{−/−} mice with PIC and examined GFP expression in the lung. As expected, CD45⁺ hematopoietic cell GFP expression was completely dependent on IFNAR1. Additionally, CD45[−]CD31⁺ endothelial cell GFP expression was also completely dependent on IFNAR1. While EpCAM⁺ epithelial cell GFP expression was largely dependent on IFNAR1, some expression was still present in Mx1^{Δp}/Ifnar1^{−/−} mice. This was completely abolished in Mx1^{Δp}/Stat2^{−/−} mice, confirming that the reporter functions in response to both type I and type III IFN signaling and that both pathways are important in epithelial cells (Figures 1C and 1D). While this confirms reporter functionality for both type I and type III IFN signaling, the relative importance of the pathways for the IFN response is likely to change under different conditions. It should also be noted that other cytokines have been reported to activate STAT2; therefore, while loss of GFP expression in Stat2^{−/−} mice is consistent with IFN-dependence, we cannot completely exclude effects of other cytokines.

Constitutive IFN Signaling in Tissues and Monocytes

Type I IFNs are produced at low levels in the absence of infection and exert effects on a diverse array of biological processes. This is thought to occur through modulating the expression of signaling intermediates required for IFN and other cytokine responses, thus priming responses to other cytokines (Gough et al., 2012). In order to characterize the basal response to IFN in vivo, we first used untreated Mx1^{Δp} mice as an indicator of constitutive IFN signaling in the absence of stimulation or infection. We observed GFP expression in all tissues examined—levels were low (2%-4%) in lymph nodes and spleen, intermediate in the lung (6%), and highest in the bone marrow (9%, Figure S2). A GFP signal was detectable in all cell types examined in the spleen and bone marrow (Figures 2A and 2B). However, Ly6C^{hi} monocytes (Ly6C^{hi}CD11b⁺Ly6G⁺) universally expressed high levels of GFP. We confirmed that basal GFP expression in Ly6C^{hi} monocytes was due to IFN signaling; GFP expression was completely lost in the bone marrow and spleen of Mx1^{Δp}/Ifnar1^{−/−} and Mx1^{Δp}/Stat2^{−/−} mice (Figures 2C and 2D), indicating that basal IFN responses in Ly6C^{hi} monocytes are dependent on type I IFN signaling.

We next determined if other ISGs were upregulated in Ly6C^{hi} monocytes, by sorting Ly6C^{hi} and Ly6C^{lo} monocytes from the spleens of Mx1^{Δp} and Mx1^{Δp}/Stat2^{−/−} mice and examining gene expression. We observed a number of other ISGs, including Ccl2, Irf7, Oas1, Ifit1, and Stat2, upregulated in Ly6C^{hi} monocytes from Mx1^{Δp} mice relative to Ly6C^{lo} monocytes or Ly6C^{hi} monocytes from Mx1^{Δp}/Stat2^{−/−} mice (Figure 2E). The lack of ISG induction in Ly6C^{hi} monocytes is in agreement with previous work showing a lack of ISG induction in this subset in Ifnar1^{−/−} mice (Lin et al., 2014; Seo et al., 2011). We also examined signaling intermediates that could be responsible for the elevated response of Ly6C^{hi} monocytes to basal levels of IFN. We observed a number of other ISGs, including Ccl2, Irf7, Oas1, Ifit1, and Stat2, upregulated in Ly6C^{hi} monocytes from Mx1^{Δp} mice relative to Ly6C^{lo} monocytes or Ly6C^{hi} monocytes from Mx1^{Δp}/Stat2^{−/−} mice (Figure 2E). The data support that Ly6C^{hi} monocytes
Figure 2. Basal IFN Responses Are Present at High Levels in Ly6Chi Monocytes

(A and B) Bone marrow and spleen cells from untreated B6 or Mx1gfp mice were stained for T cells (CD3+), B cells (CD19+), DCs (CD11c+), NK cells (NK1.1+), neutrophils (Ly6G/Ly6C+CD11b+), or monocytes (Ly6C+Ly6G−CD11b+), and GFP expression was examined. (C and D) Bone marrow or spleen was harvested from the indicated untreated mice, and GFP expression on Ly6ChiLy6G−/C0CD11b+ monocytes was analyzed. (E) qPCR on sorted spleen Ly6C+Ly6G−/CD11b+ and Ly6C−Ly6G−/CD11b+ monocytes from untreated Mx1gfp and Mx1gfp/Stat2−/− mice. (B) shows mean ± SD for n = 4 animals. (D) shows mean ± SD for n = 3 animals. (E) shows mean ± SD for n = 3 animals. **indicates significance of p < 0.01 using unpaired t test. (A) and (C) show representative FACs plots. See also Figure S2.
display an IFN signaling signature; however, the underlying molecular mechanism requires further investigation.

PIC Induces a Systemic IFN Response

We next examined the interferon response in Mx1gfp mice following systemic exposure to IFN, R848, or PIC. All of the stimuli induced an IFN response in the spleen at day 1 post-exposure (Figure S3A). This response is likely to be dose dependent; however, because PIC induced the highest response, we chose to characterize this response further. Following exposure to i.v. PIC, we observed high levels of GFP in the spleen at day 1 post-exposure, which gradually fell back to baseline by day 5 (Figures 3A and 3B). GFP expression was first detectable at approximately 4 hr post-exposure in the spleen following i.v. PIC treatment (Figure 3C). GFP expression was found in all cell types examined in the spleen; relatively low levels were induced in Ly6C+CD11b+Ly6G+ neutrophils, and high levels were found in Ly6C+ monocytes (Figures 3D and E). We also observed strong GFP expression in the bone marrow, spleen, lymph nodes, and lung (Figures 3F and 3G, top). In order to assess the role of route of exposure on interferon responses, we injected Mx1gfp mice intranasally with PIC and examined GFP expression in organs. Intranasal exposure induced responses in all organs; however, they were lower in terms of percentage of GFP+ cells and mean fluorescence intensity (MFI) compared to systemic exposure, with the exception of the lung, which showed very high GFP expression in response to intranasal treatment (Figures 3F and 3G, bottom). Following intranasal exposure, responses in the lung remained high from day 1–4 post-exposure, whereas they peaked at day 1 in other organs (Figure S3B). This may reflect persistence of the PIC stimulus in the lung environment. Similar to systemic exposure, intranasal exposure also lead to GFP expression in a variety of cell types in the lung and again a prominent population of Ly6C+GFP+ monocytes (Figure S3C). Overall the data indicate that exposure to PIC either systemically or intranasally results in IFN responses with a clear peak that resolve within approximately 5 days and efficiently reach organs distant from the site of the stimulus.

The IFN Response to Influenza Virus Is Confined to the Lung and Draining Lymph Node

Pathogen-associated molecular patterns (PAMPs) and pathogens induce similar signaling pathways, but differ in important ways. Pathogen exposure often starts with a low infectious dose of the organism, followed by a period of replication before detection by the immune system. Additionally, pathogens express antagonists that interfere with the immune response, and organisms express host factors that limit viral replication. To examine the IFN response following pathogen exposure, we followed GFP expression after infection with influenza virus. Mice were infected with 10^5 pfu of PR8, and infection was followed for 10 days. In striking contrast to PIC, mice infected with PR8...
showed no GFP expression at day 1 and day 2 post-infection in the lung, with responses first becoming detectable at day 3–4 post-infection (Figure 4A). This is in agreement with previous data suggesting “stealth” replication of influenza virus prior to the initiation of innate responses (Moltedo et al., 2009), i.e., replication for ~48 hr with no sign of induction of innate immunity. GFP responses peaked between day 6 and 7 post-infection (Figure 4B). We next infected mice with the Cal09 pandemic influenza virus, which is less pathogenic in mice than PR8 or the H5N1 HALo viruses (Maines et al., 2009). GFP responses in the draining lymph node were evident at day 1 post-infection, before responses in the lung. We again failed to detect GFP expression in the spleen and non-draining lymph nodes; however, a small response was detected in the bone marrow (Figure 4B). We next infected mice with the Cal09 pandemic influenza virus, which is less pathogenic in mice than PR8 or H5N1 HALo viruses (Maines et al., 2009). GFP responses to Cal09 were delayed similar to PR8 (Figure 4C); however, a number of animals in the Cal09 group showed no GFP expression, which may reflect that 10^2 pfu is close to the minimal infectious dose for this virus (Maines et al., 2009). Overall the data suggest that less pathogenic strains induce a delayed IFN response that peaks and then resolves, while more pathogenic strains induce an early IFN response that fails to resolve and remains high until the animals succumb to infection.

In order to determine if the delay in GFP expression during PR8 infection was due simply to the infectious dose, we infected mice with increasing doses of PR8. At day 3 post-infection, doses of 10^3 and 10^4 were able to induce higher levels of GFP than the 10^2 dose. However, we did not observe GFP expression at day 2 with any of the doses (Figure 4D), suggesting that early GFP expression during H5N1 infection is due to factors other...
than virus replication. To assess the impact of NS1 on interferon responses, we infected mice with the PR8 R38A/K41A NS1 RNA-binding mutant, expressing an NS1 protein impaired in its ability to prevent IFN induction. As expected, infection with 10^6 pfu resulted in a high GFP response starting at day 1 post-infection and continuing through day 5 (Figure 4E). However, infection with 10^2 pfu of the NS1 mutant gave no detectable response, presumably due to a very local response that quickly restricted virus replication (Figure 4E). Thus, both viral dose and NS1 expression control the kinetics of the early IFN response.

IFN Responses to Influenza Virus Are Largely Restricted to Hematopoietic Cells

We next examined the cell types expressing GFP in the lung following influenza virus infection. Mice were infected with 10^2 pfu of PR8, and lungs were stained at the peak of GFP expression at day 7 for epithelial cells (EpCAM^+CD45^-), endothelial cells (CD31^+), and hematopoietic cells (CD45^+). A strong GFP signal was observed in infiltrating hematopoietic cells, and a small signal was observed in endothelial cells (Figures 5A and 5B). Surprisingly, very little GFP was detected in epithelial cells, the target cells for influenza virus replication. We were also unable to observe expression in CD45^- cells at other time points post-infection (Figure S4A). This was not due to an inability of epithelial cells to respond to IFN, as treatment with PIC led to GFP expression in greater than 90% of these cells (Figure 5A). We were, however, able to detect a GFP signal in epithelial cells using a high viral inoculum (10^6) of PR8 or the R38A/K41A NS1 mutant strain (Figures 5C and 5D). This suggests that during low-dose infection, NS1 is able to limit IFN to levels that readily trigger reporter expression in hematopoietic cells but are not sufficient for detection in epithelial cells. In support of this, treatment with lower doses of PIC was able to induce responses in hematopoietic cells at concentrations where epithelial cells did not respond (Figures 5C and D). In addition, responses to PIC appeared to be induced in a more transient manner (day 1) in epithelial cells compared to the more sustained responses (day 1–5) in hematopoietic cells (Figure S4B). Thus, although epithelial cells are capable of responding to IFN after treatment with PIC, they do not have a detectable response following low-dose influenza virus infection, likely due to a lower sensitivity to IFN.

In order to more directly compare the responses of hematopoietic cells to non-hematopoietic cells, we stimulated bone-marrow-derived macrophages and mouse embryonic fibroblasts (MEFs) with type I IFN and infected with viruses. In macrophages, we observed responses to type I interferon starting at 10 U/ml and higher responses to increasing levels of IFN. However, in MEFs, we only observed responses to IFN at

Figure 5. The IFN Response to Influenza Virus Is Largely Restricted to Hematopoietic Cells in the Lung

(A and B) Mx1^grfp mice were stained for hematopoietic cells (CD45^+), epithelial cells (EpCAM^+CD45^-), or endothelial cells (CD31^+) in the lung at day 7 post-infection with 10^2 pfu of PR8 or at day 1 post-treatment with 50 μg of i.n. PIC.

(C and D) Mx1^grfp mice were infected with 10^6 pfu of PR8 or PR8-NS1 R38A/K41A or treated i.n. with the indicated amount of PIC, and GFP expression was measured in hematopoietic and epithelial cells at day 1. (E and F) Macrophages and MEFs were stimulated with universal type I IFN or infected with PR8 or PR8-NS1 at different MOIs, and GFP was measured (E) or viral gene expression was determined (F) at 24 hr post-infection. (B) and (D) show the mean ± SD for n = 3 animals. (A), (C), and (E) show representative FACs plots. See also Figure S4.
During influenza virus infection, we observed GFP at higher virus MOIs in macrophages, but did not observe GFP in MEFs. Using PR8\(D\)NS1 virus, we could observe GFP in MEFs; however, we again observed responses in macrophages at much lower MOIs (Figure 5E). Western blotting for viral proteins revealed robust expression of viral proteins in MEFs but very little expression in macrophages. We saw high levels of NS1 in MEFs but only low levels in macrophages (Figure 5F), which may suggest that NS1 expression effectively limits IFN induction in virus-infected MEFs, but expression is not sufficient in macrophages to limit IFN production.

GFPhi Cells during Influenza Virus Infection Are Infected Ly6Chi Monocytes

We next examined the subsets of CD45+ cells expressing GFP following infection. We observed varying levels of GFP among infiltrating CD45+ cells in the lung during infection (Figures 6A and 6B). The GFPlo population was composed largely of T cells, B cells, and natural killer (NK) cells (MFI 1059, 1640, and 1086, respectively). A portion of CD11c+SiglecF+ alveolar macrophages expressed intermediate levels of GFP (MFI 4103); however, these cells have high baseline auto-fluorescence in the absence of GFP expression (Figures 6A and S5A). CD11c+MHCIIdCD103+ DCs expressed intermediate levels of GFP (MFI 3936). The GFPlo population was composed of Ly6C+CD11b+Ly6G+CD11c+ inflammatory monocytes (MFI 11961). These cells expressed GFP in the absence of stimulation (Figures 2A–2D), which was further upregulated upon infection (Figure S5A, inset histogram). CD11c+MHCIIdCD11b+ DCs also expressed high levels of GFP; however, these cells are thought to migrate to the draining lymph node following infection, and inflammatory monocytes express both CD11c and MHCIIdCD103+CD11b+ neutrophils (Ly6C+Ly6G+CD11b+), and Ly6C+ monocytes (Ly6C+Ly6G+CD11b+) at day 7 post-infection.

GFPhi Cells during Influenza Virus Infection Are Infected Ly6C+ Monocytes

We next examined the subsets of CD45+ cells expressing GFP following infection. We observed surface M2 expression in T cells, B cells, Ly6C+ monocytes, or epithelial cells at day 9 post-infection (Figure 6A). We examined these cell types at day 9 (D9) post-infection with PR8. GFP was observed in all cell types; however, the majority of cells in the lymph node (LN) were CD4 and CD8 T cells and B cells (Figure S5B). Therefore, following influenza virus infection, Ly6C+ monocytes in the lung and T and B cells in the LN show high IFN responses.

We next determined if GFP expression correlated with viral protein expression. We measured surface M2 expression during infection with PR8. A small population of CD45+EpCAM+ epithelial cells (7%) showed M2 expression but was GFP negative (Figures 6C and 6D). We observed two other prominent populations, a GFPloM2+ population and a GFPhiM2+ population (Figures 6C and 6D). The GFPloM2+ population was mainly composed of T and B cells, while the GFPhiM2+ population was composed of Ly6C+ monocytes. This may suggest that infection contributes to high IFN responses in monocytes.

Ly6C+ Monocyte Recruitment, but Not Development, Is Dependent on IFN Signaling

In order to understand the significance of high IFN responses in Ly6C+ monocytes, we examined this subset under basal and infection conditions. IFNAR1 has been reported to be required
for the generation of Ly6Chi monocytes (Seo et al., 2011); however, we detect the presence of both the Ly6Chi inflammatory monocyte and Ly6Clo patrolling monocyte populations, defined as Ly6C\(^{hi}\)CD11b\(^+\)Ly6G\(^{-}\) and Ly6C\(^{lo}\)CD11b\(^+\)Ly6G\(^{-}\), in uninfected Mx1\(^{gfp}\)/Stat2\(^{−/−}\) (Figure 7A) mice and Mx1\(^{gfp}\)/Ifnar1\(^{−/−}\) mice (data not shown), which is in agreement with another report (Lee et al., 2008). Ly6C is an ISG (Dumont and Coker, 1986; Lee et al., 2008) and therefore is upregulated in WT mice, but not mice deficient in IFN signaling, under infection conditions (Figure 7A). Seo et al. (2011) defined this population on the basis of Ly6C and Ly6G staining only, which includes other Ly6C expressing cells, and gated on the Ly6C\(^{hi}\) population under infection conditions, which likely explains the discrepancy.

Although Mx1\(^{gfp}\)/Stat2\(^{−/−}\) mice have Ly6C\(^{hi}\) monocytes, their recruitment to the lung during influenza virus infection is severely reduced in terms of absolute numbers, with a concomitant increase in neutrophil numbers (Figure 7B), in agreement with previous findings in Ifnar\(^{−/−}\) mice (Seo et al., 2011). We were unable to detect consistent viral titers at day 2 post-infection; however, by day 3 post-infection, Mx1\(^{gfp}\)/Stat2\(^{−/−}\) mice showed slightly higher viral titers (Figure 7C), indicating that decreased recruitment of Ly6C\(^{hi}\) monocytes to the lung in Mx1\(^{gfp}\)/Stat2\(^{−/−}\) mice was not due to reduced viral replication. In agreement with previous findings (Davidson et al., 2014; Lin et al., 2014; Seo et al., 2011), we find very little induction of the monocyte chemoattractants Ccl2 and Ccl7 in the absence of STAT2 (Figure 7D), likely because they are ISGs (Bauer et al., 2006; Rauch et al., 2013) and cannot be induced in the absence of IFN signaling. We also find no induction of Ifnb1 (Figure 7D). These data suggest that IFN signaling is required for recruitment, but not generation, of Ly6C\(^{hi}\) monocytes; however, it is unclear if the role of IFN is direct or simply a consequence of the lack of ISG induction.
DISCUSSION

A number of reporter mouse strains have helped to define the cell types that produce IFN in vivo following infection; however, less is known about the dynamics of the subsequent antiviral state that is induced. Here we report the development of a reporter mouse strain that can be used to track IFN responses at the single-cell level. We show that the reporter responds to both type I and type III IFN. Importantly, reporter expression is completely lost in the absence of IFNAR, in some cell types, or STAT2, in all cell types examined. This confirms specificity of the reporter for IFN signaling, although in the case of STAT2 we cannot completely exclude that other cytokines may contribute to STAT2-mediated reporter gene expression. This model will be useful for understanding the basic biology of the type I IFN system, including the different roles of the IFN subtypes, as well as the IFN response under pathological conditions including acute and persistent infections and systemic and organ-specific autoimmunity.

A similar mouse model expressing luciferase under the control of the Mx2 promoter in the context of a BAC transgenic was previously reported (Pulverer et al., 2010). The Mx1 and Mx2 loci are thought to be regulated by IFN in a similar manner (Asano et al., 2003; Haller and Kochs, 2011; Mordstein et al., 2010). The luciferase reporter is optimal for whole body in vivo imaging, while GFP is more suited to single-cell studies. Following luciferase expression by in vivo imaging, a strong IFN response was observed in the liver. While direct comparison between the studies is difficult due to different experimental conditions and techniques for measuring the reporters, we observed longer kinetics for the IFN response to PIC, as follows: 4 days in the spleen compared to 2 days in the liver. This may reflect organ-specific differences, different sensitivities or half-lives of the reporters, or different sensitivities of in vivo imaging compared to flow cytometry. In response to PIC, we found IFN responses in every organ examined, while the in vivo imaging study found IFN responses focused on the liver. When individual organs were isolated following treatment with IFN-β, luciferase expression was observed in other organs. Therefore, the strong signal in the liver likely masked the signal in other organs during influenza virus infection.

In response to influenza virus infection, we found that the IFN response was delayed, locally confined, and restricted in terms of cell types compared to responses to PIC. While PIC led to a high IFN response within 4 hr of treatment, we could not detect an IFN response to influenza virus until 3–4 days post-infection. This delay in the IFN response is in agreement with previous studies describing stealth replication of influenza virus for ~48 hr before detection (Moltedo et al., 2009). The kinetics of the response are in agreement with the kinetics of IFN-β expression observed in IFN-β luciferase mice (Lienenklaus et al., 2009) and Mx1 expression as measured by qPCR (Moltedo et al., 2009). In response to PR8 infection, IFN responses peaked and then began to resolve; however, in response to HALo infection, IFN responses remained at peak levels from day 2 through 5, when the animals succumbed to infection, which is in agreement with the cytokine storm that has been described for H5N1 viruses (Tisoncik et al., 2012).

We found that IFN responses to influenza virus were confined to the lung and draining LN, which are areas of active viral replication (Moltedo et al., 2011). This is in agreement with IFN-β localization to the lung in influenza-infected IFN-β luciferase mice (Lienenklaus et al., 2009). IFN produced during SeV or PR8 infection has been reported to “instruct” cells in the bone marrow into an antiviral state, before they are recruited to the lung. While both SeV and PR8 were able to induce ISG expression in the bone marrow as measured by qPCR, the fold induction was low for influenza virus. Functional experiments confirmed that SeV could induce an antiviral state in bone marrow cells; however, these experiments were not reported for influenza virus (Hermesh et al., 2010). It is possible that different strains and doses of influenza virus may be capable of inducing a more systemic response, as was suggested by a slight increase in GFP expression in the bone marrow following HALo infection.

Here we report that GFP-detectable IFN responses are restricted to a limited set of cell types in the lung following influenza virus infection. We could not detect an IFN response in epithelial cells during low-dose influenza virus infection. This was surprising given that IFN responses can readily be detected in epithelial cell lines infected in vitro. However, it is in agreement with a lack of reporter expression in epithelial cells following infection with WT strains of influenza virus in IFN-β luciferase mice (Kallfass et al., 2013). In bone marrow chimeras expressing a functional Mx1 protein in either the hematopoietic or non-hematopoietic compartment, protection from lethal influenza virus infection is mediated by non-hematopoietic cells (Haller et al., 1979; unpublished data). This suggests that IFN responses are functional in non-hematopoietic cells in vivo and that the lack of detection in our model represents a limit of detection, induction limited to a narrow anatomical region or time frame, or induction by ISRE-independent IFN pathways that would not be detected by our reporter. Higher viral inoculums or NS1-deficient strains were able to induce measurable IFN responses in epithelial cells, in agreement with expression of Mx1 protein in epithelial cells following infection of an Mx1-sufficient strain with an NS1-deficient virus (Mordstein et al., 2010). Interestingly, the cell types producing IFN-β in response to La Crosse virus infection also change in the presence or absence of the IFN antagonist protein (Kallfass et al., 2012), suggesting that at least some viral IFN antagonists restrict the induction of IFN and ISGs in specific cell types.

We found surprisingly high IFN responses both basally and during infection in inflammatory monocytes. Monocytes are hematopoietic cells that originate from myeloid progenitors in the bone marrow and traffic to peripheral tissues via the bloodstream. They are divided into two subsets termed “inflammatory” and “patrolling” monocytes. In response to inflammatory stimuli, Ly6C⁺ monocytes are recruited to the site of infection and differentiate into monocyte-derived cells (MCs) with different functional properties and marker expression (Duan et al., 2017; Guilliams et al., 2014; Segura and Amigorena, 2013; Xiong and Pamer, 2015). The reason for the high IFN responses in inflammatory monocytes is unknown; however, we
did find that they expressed high levels of surface M2, indicating that they were infected. Monocyte infection has been reported in a few other studies (Lin et al., 2014; Pang et al., 2013). Inflammatory monocytes have also been reported to produce IFN (Lin et al., 2014) and to mediate tissue damage in mouse strains that produce high levels of IFN (Davidson et al., 2014). The basal responses we observed in inflammatory monocytes were dependent on IFN signaling, which could suggest that this subset produces low-level IFN that primes subsequent responses to infection. We did not observe differences in receptor expression or signaling components of the IFN pathway between inflammatory and patrolling monocytes, with the exception of STAT2. Whether STAT2 or other factors contribute to the high basal and induced IFN responses in inflammatory monocytes is under further investigation. We find that IFN signaling is not required for the development of inflammatory monocytes; however, it is required for their recruitment during infection. Because Ly6C is an ISG, the population defined as Ly6Ch in the previous study (Seo et al., 2011) was likely a MC that had upregulated Ly6C expression under inflammatory conditions. We find that IFN signaling is required for recruitment of inflammatory monocytes during infection; whether this is a direct effect or an indirect result of the lack of chemokine induction is under further investigation.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCE TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Animal models
 - Primary cell cultures
- **METHOD DETAILS**
 - Generation of Mx1^{gfp} mice
 - Organ isolations
 - Flow cytometry and cell sorting
 - Infections and TLR stimulation
 - Western blots
 - qRT-PCR
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and one table and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.11.030.

ACKNOWLEDGMENTS

We thank the Mouse Genetics and Gene Targeting CoRE at Icahn School of Medicine at Mount Sinai for their assistance with the production of the mice used for this study and Christian Schindler for originally providing the Stat2^{−/−} mice. We are grateful to Richard Cadagan and Osman Lizardo for excellent technical assistance. This work was partially supported by the Center for Research on Influenza Pathogenesis, an NIAID funded Center of Excellence for Influenza Research and Surveillance (CIEIRS, contract HHSN272201400008C to A.G.-S. and M.B.U.).

AUTHOR CONTRIBUTIONS

M.B.U. conceived the project, performed the experiments, generated the figures, and wrote the manuscript. A.G.-S. conceived the project, supervised the work, provided funding, and critically reviewed the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J. Virol. 84, 4442–4450.

viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J. Virol. 83, 1742–1753.
STAR METHODS

KEY RESOURCE TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD3-APC (145-2C11)</td>
<td>BD</td>
<td>Cat#553066; RRID:AB_398529</td>
</tr>
<tr>
<td>CD19-APC (1D3)</td>
<td>BD</td>
<td>Cat#550992; RRID:AB_398483</td>
</tr>
<tr>
<td>CD11c-V450 (HL3)</td>
<td>BD</td>
<td>Cat#560521; RRID:AB_1727423</td>
</tr>
<tr>
<td>CD11c-PE-Cy7 (HL3)</td>
<td>BD</td>
<td>Cat#561022; RRID:AB_2033997</td>
</tr>
<tr>
<td>NK1.1-APC (PK136)</td>
<td>BD</td>
<td>Cat#550627; RRID:AB_398463</td>
</tr>
<tr>
<td>Ly6G-V450 (1A8)</td>
<td>BD</td>
<td>Cat#560603; RRID:AB_1727564</td>
</tr>
<tr>
<td>Ly6C-PerCP-Cy5.5 (AL-21)</td>
<td>BD</td>
<td>Cat#560525; RRID:AB_1727558</td>
</tr>
<tr>
<td>CD11b-PE (M1/70)</td>
<td>BD</td>
<td>Cat#561689; RRID:AB_10893803</td>
</tr>
<tr>
<td>B220-APC (RA3-6B2)</td>
<td>BD</td>
<td>Cat#561880; RRID:AB_10897020</td>
</tr>
<tr>
<td>CD45-APC (30-F11)</td>
<td>BD</td>
<td>Cat#561018; RRID:AB_10584326</td>
</tr>
<tr>
<td>SiglecF-BV421 (E50-2440)</td>
<td>BD</td>
<td>Cat#562681; RRID:AB_2722581</td>
</tr>
<tr>
<td>CD11b-PE-Cy7 (HL3)</td>
<td>BD</td>
<td>Cat#561022; RRID:AB_2033997</td>
</tr>
<tr>
<td>CD4-APC (GK1.5)</td>
<td>eBioscience</td>
<td>Cat#17-0041-82; RRID:AB_469320</td>
</tr>
<tr>
<td>CD103-APC (2E7)</td>
<td>eBioscience</td>
<td>Cat#17-1031-82; RRID:AB_1106992</td>
</tr>
<tr>
<td>EpCAM-PE-Cy7 (G8.8)</td>
<td>eBioscience</td>
<td>Cat#25-5791-80; RRID:AB_1724047</td>
</tr>
<tr>
<td>CD31-PerCP-eFluor 710 (390)</td>
<td>eBioscience</td>
<td>Cat#46-0311-80; RRID:AB_1834430</td>
</tr>
<tr>
<td>MHC Class II (I-A/I-E) eFluor 450 (M5/114.15.2)</td>
<td>eBioscience</td>
<td>Cat#48-5321-82; RRID:AB_1727204</td>
</tr>
<tr>
<td>FasL-APC (MFL3)</td>
<td>eBioscience</td>
<td>Cat#17-5911-82; RRID:AB_10717074</td>
</tr>
<tr>
<td>CCR2-APC (475301)</td>
<td>R&D Systems</td>
<td>Cat#FAB5538A; RRID:AB_10645617</td>
</tr>
<tr>
<td>Influenza M2 (E10) conjugated to alexa 647</td>
<td>Bourmakina and García-Sastre, 2005</td>
<td>N/A</td>
</tr>
<tr>
<td>mouse anti-NP (HT-103)</td>
<td>Kerafast</td>
<td>Cat#EMS010; RRID:AB_2728685</td>
</tr>
<tr>
<td>rabbit polyclonal anti-NS1 (1-73)</td>
<td>Solórzano et al., 2005</td>
<td>N/A</td>
</tr>
<tr>
<td>rabbit β-Actin mAb HRP Conjugate</td>
<td>Cell signaling</td>
<td>Cat#5125; RRID:AB_1903890</td>
</tr>
<tr>
<td>Fc block</td>
<td>BD</td>
<td>Cat#553142; RRID:AB_394657</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR8: A/PR/8/34 (H1N1)</td>
<td>Extensively passaged lab strain</td>
<td>N/A</td>
</tr>
<tr>
<td>HALo: A/Viet Nam/1203/04 (H5N1) lacking the multibasic cleavage site</td>
<td>Steel et al., 2009</td>
<td>N/A</td>
</tr>
<tr>
<td>Cal09: A/California/04/09 (H1N1)</td>
<td>Hai et al., 2010</td>
<td>N/A</td>
</tr>
<tr>
<td>delNS1: A/PR/8/34 (H1N1) delNS1</td>
<td>Garcia-Sastre et al., 1998b</td>
<td>N/A</td>
</tr>
<tr>
<td>PR8 NS1 R38A/K41A: A/PR/8/34 (H1N1) NS1 R38A/K41A</td>
<td>Talon et al., 2000</td>
<td>N/A</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly(I:C) HMW</td>
<td>Invivogen</td>
<td>Cat#tlrl-pic</td>
</tr>
<tr>
<td>R848</td>
<td>Invivogen</td>
<td>Cat#tlrl-r848</td>
</tr>
<tr>
<td>Universal type I IFN</td>
<td>PBL Interferon</td>
<td>Cat#11200-2</td>
</tr>
<tr>
<td>rmM-CSF</td>
<td>R&D Systems</td>
<td>Cat#416-ML</td>
</tr>
<tr>
<td>Dispase</td>
<td>BD</td>
<td>Cat#354235</td>
</tr>
<tr>
<td>Collagenase type 4</td>
<td>Worthington</td>
<td>Cat#LS004209</td>
</tr>
<tr>
<td>DNase I</td>
<td>Sigma</td>
<td>Cat#D4527</td>
</tr>
<tr>
<td>LMA agarose</td>
<td>Lonza</td>
<td>Cat#50081</td>
</tr>
<tr>
<td>eFluor 455UV viability dye</td>
<td>eBioscience</td>
<td>Cat#65-0868-18</td>
</tr>
<tr>
<td>AccuCount Particles</td>
<td>Spherotech</td>
<td>Cat#ACFPe-70-10</td>
</tr>
<tr>
<td>Halt Protease and Phosphatase Inhibitor Cocktail</td>
<td>Thermo</td>
<td>Cat#78440</td>
</tr>
</tbody>
</table>

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Adolfo Garcia-Sastre (Adolfo.Garcia-Sastre@mssm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal models

6-8 week old age and sex matched mice were used for all experiments. Both males and females were used; obvious sex difference were not noted. C57BL/6J mice (Jackson) were used to set GFP gates. Ifnar1+/−/− (Müller et al., 1994) and Stat2+/−/− (Park et al., 2000) mice on the C57BL/6J background have been previously described. Ifnbmob mice on the C57BL/6J background were purchased from Jackson. Animal studies were approved by the Institutional Animal Care and Use Committee of Icahn School of Medicine at Mount Sinai. Mice were housed in a barrier facility at the Icahn School of Medicine at Mount Sinai under specific pathogen free conditions in individually ventilated cages and feed irradiated food and filtered water.

Primary cell cultures

Bone marrow-derived macrophages were obtained by extracting bone marrow from femurs and tibias of mice, RBCs were lysed and cells were cultured for 7 days in RPMI 1640 (GIBCO) containing 10% FBS (Hyclone), Penicillin, Streptomycin, L-glutamine, HEPES (Cellgro), β-ME, and 10 ng/ml rmM-CSF (R&D Systems). Macrophages were removed from the plate following incubation with cold PBS and plated in 12-well plates at 1x10^5/well. P2 MEFs were trypsinized and plated similarly. Cells were cultured at 37°C in 5% CO2.

METHOD DETAILS

Generation of Mx1Gfp mice

The Mx1Gfp targeting vector was constructed using the recombineering protocol described in Wu et al. (2008). Briefly, a portion of the C57BL/6J BAC clone RP24-363P1 (BACPAC) was transferred into pACYC177 (NEB), and an Ascl restriction site was inserted into exon 2 of Mx1 at the natural translation start site using red recombinase. A fusion protein of maxGFP-GSGGS-OVA(229-358) and the ACN cassette containing a self-excising neomycin (Wu et al., 2008) was inserted into the Ascl site, and DTx cloned out of PGKnolox2DTA (Soriano, 1997) was inserted into the plasmid backbone. The targeting vector was electroporated into C57BL6 Brucet4 ES cells at the Transgenic Mouse Core at Harvard Medical School and injected into BALB/c blastocysts at the Mouse Genetics and Gene Targeting CoRE at Icahn School of Medicine at Mt. Sinai. Germline transmission was confirmed by Southern blot and PCR. Southern blotting was performed by alkaline transfer, digesting DNA with Asel and probing with PCR product.
generated with primers the primers listed in Table S1. Mice were genotyped with GoTaq Flexi DNA polymerase (Promega) the primers WT-F, WT-R, and KI-R listed in Table S1 and PCR conditions: 94°C 30 s, 55°C 30 s, 72°C 30 s.

Organ isolations

Bone marrow was flushed from femurs and tibias, spleen and LNs were mechanically disrupted with the plunger of a syringe, and lungs were digested for 40 min in 1 mg/ml collagenase type 4 (Worthington) 5% FBS in DMEM. Cells were then filtered through a 0.2 μm cell strainer and RBCs were lysed. For experiments staining lung epithelial cells, an alternative protocol was used to obtain viable epithelial cells – mice were perfused with PBS through the right ventricle and then instilled intratracheally with 2 mL 50 U/ml dispase (BD) in HBSS and 500 μL 1% LMA agarose (Lonza) warmed to 45°C. Lungs were covered with ice for 2 min, removed to a tube containing 2 mL dispase, and incubated at RT for 45 min. Tissue was disintegrated with forceps in 95 KU/ml DNase I (Sigma) in DMEM and incubated for 10 min at RT. Cells were then filtered and any remaining RBCs were lysed.

Flow cytometry and cell sorting

Cells were suspended in 3% FBS 2 mM EDTA in PBS and staining was performed in the presence of 2% NRS, 2% Fc block (BD), and fixable viability dye eFluor 450 (eBioscience). Cells were stained with the following antibodies from BD: CD3-APC (145-2C11), CD19-APC (1D3), CD11c-V450 or PE-Cy7 (HL3), NK1.1-APC (PK136), Ly6G-V450 (1A8), Ly6C-PerCP-Cy5.5 (AL-21), CD11b-PE (M1/70), B220-APC (RA3-6B2), CD45-APC (30-F11), SiglecF-BV421 (E50-2440), CD8-PerCP-Cy5.5 (53-6.7). And the following antibodies from eBioscience: CD103-APC (2E7), EpCAM-PE-Cy7 (G8.8), and from R&D: CCR2-APC (475301). Alexa Fluor 647 protein labeling kit (Thermo) was used to label the influenza M2 (E10) (Bourmakina and García-Sastre, 2005) antibody. Cells were fixed with 2% formaldehyde after staining and analyzed on an LSRII after gating for FSC/SSC, singlets, and live cells. Cells were quantitated by flow cytometry with AccuCount Particles (Spherotech). Sorting was performed similarly on FACSaria.

Infections and TLR stimulation

Mice were injected with 50 or 100 μg Poly(I:C) HMW (Invivogen), 15,000 U universal type I IFN (PBL Interferon), or 35 μg R848 (Invivogen) in PBS (in 50 μL for i.n. or 200 μL for i.v.). Mice were infected with the following viruses at the doses indicated in 20 μL PBS: A/PR/8/34 (H1N1) (PR8), A/Viet Nam/1203/04 (H5N1) lacking the multibasic cleavage site (HALo) (Steel et al., 2009), A/California/04/09 (H1N1) (Cal09) (Hai et al., 2010), A/PR/8/34 (H1N1) delNS1 (García-Sastre et al., 1998b) (delNS1), A/PR/8/34 (H1N1) NS1 R38A/K41A (Talon et al., 2000) (PR8 NS1 R38A/K41A). Viral titer was determined by plaque assay on MDCK cells. Macrophages and MEFs were stimulated with universal type I IFN (PBL Interferon) or infected with virus. The following day cells were stained with eFluor 455UV viability dye (eBioscience) and fixed with 4% PFA for flow cytometry.

Western blots

For western blots, 2x10⁵ macrophages or MEFs were plated in 12-well plates and infected at the indicated MOI, lysed in RIPA buffer containing Halt Protease and Phosphatase Inhibitor Cocktail (Thermo), denatured in Laemmli buffer, run on 4%-12% Bis-Tris gels (Thermo), and transferred to PVDF membranes. Membranes were blocked with 5% nonfat milk 0.1% Tween-20 in PBS and probed with mouse anti-NP (HT-103), (Kerafast) rabbit polyclonal anti-NS1 (1-73) (Solórzano et al., 2005), and rabbit β-Actin mAb HRP Conjugate (Cell Signaling).

qRT-PCR

Total RNA was extracted from sorted spleen cells or collagenase-digested lung using using EZNA total RNA kit and RNase-free DNase (Omega). RNA was reverse-transcribed using Maxima Reverse Transcriptase and oligo-dT (Thermo). Quantitative RT-PCR was performed on cDNA using LightCycler 480 SYBR Green I Master Mix (Roche) and the primers listed in Table S1 on a LightCycler 480 II.

QUANTIFICATION AND STATISTICAL ANALYSIS

Graphpad Prism 7.0 was used to calculate significance using unpaired t test. Statistical details are indicated in the figure legends.