Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response

Graphical Abstract

Highlights

- Laboratory mice were sequentially infected with herpesviruses, influenza, and a helminth
- Sequential infection altered pre- and post-vaccination immune profiles compared to mock
- Sequential infection-induced gene expression changes mirrored pet store versus lab mice
- Type I IFN metagene in co-infected mice is enriched in human adult versus cord blood

Authors

Tiffany A. Reese, Kevin Bi, Amal Kambal, ..., David Masopust, W. Nicholas Haining, Herbert W. Virgin

Correspondence
tiffany.reese@utsouthwestern.edu (T.A.R.),
virgin@wustl.edu (H.W.V.)

In Brief

Immune response variations between laboratory mice and humans make mice imperfect models for pre-clinical studies. Reese et al. demonstrate that infection of mice with multiple common pathogens changes immune gene expression at baseline and in response to vaccination, partially recapitulating differences between pet store versus laboratory mice, and human adult versus cord blood.

Accession Numbers

GSE79466

Reese et al., 2016, Cell Host & Microbe 19, 713–719
May 11, 2016 © 2016 Elsevier Inc.
http://dx.doi.org/10.1016/j.chom.2016.04.003
Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response

Tiffany A. Reese, 1,* Kevin Bi, 2 Amal Kambal, 3 Ali Filali-Mouhim, 4 Lalit K. Beura, 5 Rafick-Pierre Sekaly, 6 Stephen C. Jameson, 6 David Masopust, 2 W. Nicholas Haining, 2 and Herbert W. Virgin 3,*

1Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
2Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Pediatric Hematology and Oncology, Children’s Hospital, Boston, MA 02115, and the Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA 02142, USA
3Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
4Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
5Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
6Department of Clinical Analyses and Toxicology, School of Pharmaceutical Science at University of São Paulo, São Paulo 05508, Brazil
7Emory Vaccine Center, Yerkes National Primate Research Center and Department of Pathology, Emory University, Atlanta, GA 30329, USA
8Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence: tiffany.reese@utsouthwestern.edu (T.A.R.), virgin@wustl.edu (H.W.V.)

SUMMARY

Immune responses differ between laboratory mice and humans. Chronic infection with viruses and parasites is common in humans, but are absent in laboratory mice, and thus represent potential contributors to inter-species differences in immunity. To test this, we sequentially infected laboratory mice with herpesviruses, influenza, and an intestinal helminth and compared their blood immune signatures to mock-infected mice before and after vaccination against yellow fever virus (YFV-17D). Sequential infection altered pre- and post-vaccination gene expression, cytokines, and antibodies in blood. Sequential pathogen exposure induced gene signatures that recapitulated those seen in blood from pet store-raised versus laboratory mice, and adult versus cord blood in humans. Therefore, basal and vaccine-induced murine immune responses are altered by infection with agents common outside of barrier facilities. This raises the possibility that we can improve mouse models of vaccination and immunity by selective microbial exposure of laboratory animals to mimic that of humans.

INTRODUCTION

Substantial variation in human immune responses is due to environmental influences (Brodin et al., 2015; Roederer et al., 2015). Potential variables include nutritional status, different health practices, age, socioeconomic status, and geographic location. In addition, the bacterial microbiome influences immune and inflammatory responses (Honda and Littman, 2012; Hooper et al., 2012). An added, but less well understood, environmental contributor to variation is the history of infection with acute and chronic pathogens, including herpesviruses and intestinal parasites (Foxman and Iwasaki, 2011; Furman et al., 2015; Salgame et al., 2013; Virgin, 2014; Virgin et al., 2009). Persistent infections change the immune response to unrelated pathogens and vaccines (Furman et al., 2015; Oldstone, 2005; Osborne et al., 2014; Reese et al., 2014; Salgame et al., 2013; Selin et al., 2006; Slifka et al., 2003; Virgin, 2014). Some chronic co-infections enhance, while others inhibit, immunity to secondary challenge (Barton et al., 2007; MacDuff et al., 2015; Stelekati et al., 2014; Stelekati and Wherry, 2012). Moreover, humans are frequently infected with acute viral pathogens, which may change the immune system (Foxman and Iwasaki, 2011).

There is concern that rodent models do not faithfully predict human immune responses (Mestas and Hughes, 2004; Seok et al., 2013; Takao and Miyakawa, 2015), limiting the value of this powerful model system. However, mouse models are indispensable for biomedical studies and play a significant role in the development of vaccines and therapeutics. This highlights the need for studies that identify environmental variables that might, in addition to chromosomal genetic variation, contribute to species-specific immune response differences between mice and humans. Notably, barrier-raised mice are free of many acute and chronic infections that are recognized to contribute to human immune variation (Salgame et al., 2013; Virgin, 2014). For example, people chronically infected with intestinal helminths have lower responses to vaccination with Bacillus Calmette-Guérin (BCG) (Elias et al., 2001), cholera (Cooper et al., 2001) and tetanus toxoid (Nookala et al., 2004; Sabin et al., 1996). Furthermore, chronic infection with the herpesvirus cytomegalovirus (HCMV) alters responses to human influenza vaccination (Furman et al., 2015), and infection of mice with murine CMV (MCMV) and/or a murine γ-herpesvirus (MHV68) alters bacterial immunity and reverses inherited immunodeficiency (Barton et al., 2007; MacDuff et al., 2015). We therefore sought to test the hypothesis that infection history, and in particular...
the presence of chronic co-infections in mice with agents similar to those commonly acquired by human children as they develop, alters basal and vaccine-induced immunity. We went on to assess the relationship of the changes we observed to gene expression differences between cord blood and adult blood in humans.

RESULTS

Reduced Antibody Response in Mice Co-infected with Multiple Viruses and a Helminth after YFV-17D Vaccination

We separated 159 C57Bl/6 barrier-raised mice into four separate experiments (Figure S1B). Within each experiment, half of the mice were sequentially inoculated with PBS (“mock-infected”) and half were inoculated with a series of viruses and a helminth parasite starting at weaning to mimic a diverse infection history (“co-infected”; Figures 1A and S1). An institutional review committee following federal guidelines approved all experiments. For co-infections, we chose MHV68 (related to human Epstein-Barr virus and Kaposi’s sarcoma herpesvirus) and MCMV (related to human CMV), both of which establish persistent and latent infections in mice and alter immune responses and/or gene expression patterns in blood cells following vaccination. To define genome-wide transcriptional effects of co-infection on basal and vaccine-induced immunity, we harvested peripheral blood from mice prior to (day 0) and 3, 7, or 21 days after vaccination and examined gene expression by microarray. Unsupervised analysis revealed significant differences between mock mice and groups. One-way ANOVA was used to calculate statistical differences; ***p < 0.01. Dots represent individual animals, and bars represent averages ± SEM.

Defining Transcriptional Effects of Co-infections before and after Vaccination

To define genome-wide transcriptional effects of co-infection on basal and vaccine-induced immunity, we harvested peripheral blood from mice prior to (day 0) and 3, 7, or 21 days after vaccination and examined gene expression by microarray. Unsupervised analysis revealed significant differences between mock and co-infected samples, with mock samples clustering together and co-infected samples clustering separately (Figure S2). These data indicate that co-infection altered the basal state of the immune system prior to vaccination as well as gene expression patterns in blood cells following vaccination. Consistent with this, fold change scatter plots indicated minimal overlap in gene expression profiles between co-infected mice and mock-infected mice after vaccination at days 3 (rho = 0.029), 7 (rho = 0.11), and 21 (rho = 0.06) (Figure S3). We identified genes differentially expressed between co-infected and mock mice and performed K-means clustering to associate groups of genes that changed significantly over time during YFV infection between mock and co-infected mice. We identified five temporally distinct groups of genes differentially expressed between mock and co-infected mice. These genes contained a
total of 701 genes that fall into a broad range of biological functions related to immunity, organelle function, protein catabolism, cell death, metabolism, hemostasis, and other processes (Figures 2A and 2B).

Pathway Analysis of Five Gene Clusters in Mock and Co-infected Mice

Clusters 1 and 2 contain genes that were relatively similar in expression in co-infected and mock mice prior to vaccination and were more increased in response to vaccination in mock than in co-infected mice, especially 7 and 21 days after vaccination (Figures 2A and 2B). Pathway analysis revealed that cluster 1 genes are involved in ubiquitination, cell cycle, NF-κB signaling, and innate immune response signaling (Figure 2C, Table S1). Cluster 2 includes a smaller set of genes with a similar kinetic pattern that are related to Golgi vesicle transport. Thus, co-infection can substantially blunt transcriptional responses corresponding to these processes in barrier-raised mice.

Cluster 3 and 4 genes were elevated in co-infected mice prior to vaccination and were further induced by vaccination of co-infected mice at day 3 and then diminished with varying kinetics by days 7 and 21 (Figures 2A and 2B). These genes represent a set of processes that are induced by co-infection but less substantially upregulated by vaccination of mock mice. This suggests that co-infection markedly changed the basal state of the immune system and enhanced certain vaccine-induced transcriptional changes. Cluster 3 genes are involved in the response to interferon-γ (IFNγ) and IFNα/β, regulation of interleukin-1β (IL-1β) production, T cell activation, and cell death (Figure 2C, Table S1). These pathways are consistent with analysis of serum cytokine data, where elevated IFNγ and, to a lesser extent, IL-12p70 and IL-1β were detected in co-infected mice at day 0 prior to vaccination (Figure 2D). Cluster 4 genes are involved in amine metabolism, symbiotic interactions, and negative regulation of protein modifications (Figure 2C, Table S1).

Cluster 5 genes were lower prior to vaccination in co-infected mice and followed a kinetic pattern most similar to cluster 1 genes, with the exception that these genes were induced by vaccination in mock mice earlier than observed for cluster 1 genes, peaking at day 3. These genes are involved in IL-12 production and the function of non-lymphoid blood cells such as basophils and phagocytes as well as platelets (Figure 2C, Table S1).

Leading Edge Metagene Analysis and Comparison of Metagenes with Pet Store versus Laboratory Mice

Together, these data indicate that a history of infection in barrier-raised mice with agents similar to those that commonly infect humans changes both the basal state of the immune system and the nature and the kinetics of vaccine responses. We next sought to determine how the sets of genes regulated by co-infection related to gene expression patterns observed in other biologically relevant settings. We first considered that co-infection of barrier-raised laboratory mice might induce gene expression patterns similar to those observed in mice raised in non-barrier conditions. To this end, we performed Leading Edge Metagene (LEM) analysis (Godec et al., 2016), comparing co-infected and mock at baseline, to identify sets of genes with correlated expression (metagenes) representing specific biological processes within the co-infection gene expression profile in our datasets. This analysis identified a type I interferon response-enriched metagene in co-infected mice and a naïve lymphocyte-enriched metagene in mock-infected mice (Figure S4, Table S2). The significant enrichment of genes in co-infected mice in multiple pathways related to interferon signaling and innate immune responses is consistent with prior observations of the effects of latent and persistent herpesvirus infection on IFNγ expression (Barton et al., 2007; MacDuff et al., 2015).

We next performed enrichment analysis of the co-infected day 0 versus mock day 0 type I interferon response metagene with gene expression observed in pet store mice compared to barrier-raised laboratory mice. In addition, we compared these metagenes to laboratory mice co-housed with pet store mice compared to barrier-raised laboratory mice (Beura et al., 2016) (Figures 3A and 3B). The type I interferon metagene found in co-infected mice was significantly enriched in pet store mice as well as laboratory mice co-housed with pet store mice, while the naïve lymphocyte metagene found in mock mice was significantly enriched in laboratory mice (Figure 3). Thus, co-infected mice express genes found in mice raised in a more “dirty” environment compared to a specific pathogen-free barrier.

Comparison of Metagenes in Mock and Co-infected Mice with Neonate and Adult Blood Gene Expression Signatures

To understand whether these observations relate to species-specific gene expression patterns differing between barrier-raised mice and adult humans, we compared gene expression profiles prior to vaccination in mock and co-infected mice with human cord blood and adult blood (Votava et al., 2011). We found that the type I interferon metagene identified in co-infected mice was significantly enriched in maternal human blood, while the naïve lymphocyte metagene in mock mice was significantly enriched in human cord blood (Figure 4). Taken together, these data suggest that mock mice from a barrier facility have a naive or immature immune system that is more similar to human neonates than human adults. Co-infection of these barrier-raised mice promotes an immune system gene expression pattern more similar to pet store-raised mice and adult humans.

DISCUSSION

These data indicate that studies of immune responses in mice should consider the virome, helminth infection, and, more broadly, infection history as potential determinants of species-specific immune responses. Chromosomal genes that differ between mice and humans do not solely determine inter-species differences in the immune system. Environmental factors that contribute to variation in immune response include nutritional status, age, socioeconomic status, geographic location, and the microbiome. While studies of the bacterial microbiome highlight the important contribution this variable makes to inflammatory responses (Honda and Littman, 2012; Hooper et al., 2012), there are fewer studies addressing the contribution of acute and chronic viruses and parasites to varying immune responses. Recent work showed that an acute infection compromised tissue-specific immunity even after clearance of the bacteria.
Our work identifies chronic pathogens as important contributors to differences in response to vaccines, and likely other inflammatory conditions.

Potential mechanisms for how co-infections alter immunity are complex. Possible mechanisms include chronic stimulation of innate immune responses that regulate adaptive immunity,

(Fonseca et al., 2015). Our work identifies chronic pathogens as important contributors to differences in response to vaccines, and likely other inflammatory conditions.
antigenic mimicry, cross-reactive immune responses, altered antigen presentation, and changes in differentiation of memory and naive lymphocyte responses (Hensley et al., 2007; Oldstone, 2005; Selin et al., 2006; Stelekati et al., 2014; Stelekati and Wherry, 2012; Virgin, 2014; Virgin et al., 2009). Latent infection with the γ-herpesvirus used in our studies, MHV68, alters the number and phenotype of memory CD8+ T cells (Barton et al., 2014). Latent MCMV infection also results in profound alteration in the T cell compartment, leading to impaired naive T cell function (Cicin-Sain et al., 2012), despite no increase in susceptibility to secondary challenge with influenza virus, West Nile virus, or vesicular stomatitis (Marandu et al., 2015). Any or all of these mechanisms could be important contributors to co-infection-associated changes in gene expression and altered antibody responses to YFV vaccination.

It is important to note that effects of co-infections and mechanisms that drive co-infection-mediated changes in immune responses will likely differ depending on the co-infecting pathogens. Some pathogens will have more profound effects on T cells, for example, whereas others will have stronger effects on other aspects of immunity. Moreover, the effects driven by co-infections could be different for different vaccines. Some vaccine responses may be more affected by co-infections than others. More detailed studies will be required to determine which or what combination of our co-infecting pathogens are required for the effects we are seeing. Additionally, other studies examining different co-infecting pathogens and vaccines will be required to delineate mechanisms.

YFV vaccine is extremely efficacious; however, immune responses in humans differ significantly. Evidence suggests that although vaccine provides protection in greater than 80% of vaccinees, levels of neutralizing antibody and T cell responses are significantly different (Querec et al., 2009). Additionally, B and T cell responses to YFV vaccination are measurably different in people from different parts of the world with variable levels of baseline immune activation prior to vaccination (Gaucher et al., 2008; Muyanja et al., 2014). Together, these data suggest that researchers may have created an immune response that is less relevant to studies of humans or other mammals raised outside of barrier containment. Careful consideration of these issues may enhance the value of mouse models for experimental research relevant to human disease. As mechanisms for effects such as the co-infection-dependent changes in immunity identified here are defined, we speculate that it may become possible to manipulate the nature of mouse immune responses by re-introducing, under controlled circumstances, some of the natural infectious exposures that constitute the selective pressures that shaped the mouse immune system. This may partially humanize murine immune responses.

EXPERIMENTAL PROCEDURES

Animals, Infections, and Sample Collection

The individual experiments are outlined in Figure S1. In summary, at weaning, mice were divided into two groups. The mock group was housed in the biohazard facility with the co-infected group. The co-infected mice were infected with 10^7 plaque forming units (PFU) of MHV68 intranasally, followed by 10^6 PFU (in PBS) tissue culture passage MCMV intraperitoneally, 10^5 PFU influenza strain WSN (in PBS) intranasally, and 50 L3 larvae of H. polygyrus orally. Mice were then rested in the biohazard facility for 5–12 weeks. Mock and co-infected mice were challenged with 10^5 PFU of YFV-17D subcutaneously in the footpad. Mice were sacrificed on days 0, 3, 7, and 21, and on days 34–40 for experiments 1, 2, and 4. Blood cells, serum, spleen, and draining lymph node were collected. Blood cells were processed using RiboPure RNA purification kit from whole blood (Thermo Fisher Scientific). RNA from individual mice from each time point was pooled within an experiment for microarrays. Samples were hybridized to Affymetrix Mouse 430 2.0 arrays.

Analysis of Microarray Data

Prior to analysis, mouse microarray data were processed and normalized using the Affymetrix MAS5 algorithm, and batch correction was performed using the ComBat algorithm. Genes exhibiting differential kinetics between co-infected and mock samples over the d0–d21 time course were identified using maSigPro (Conesa et al., 2006) (default FDR < 0.05). Gene set enrichment analysis (GSEA) was performed as described previously (Subramanian et al., 2005). LEM analysis was performed downstream of GSEA to yield groups of genes, termed metagenes, which are coordinately upregulated in a given phenotypic comparison and common to multiple enriched gene sets. Metagenes were environmental factors, including possible co-infections, may contribute to inter-individual variation.

In order to enhance reproducibility of mouse studies, the biomedical research community rendered this important research animal specific-pathogen free. In doing so, researchers may have created an immune response that is less relevant to studies of humans or other mammals raised outside of barrier containment. Careful consideration of these issues may enhance the value of mouse models for experimental research relevant to human disease. As mechanisms for effects such as the co-infection-dependent changes in immunity identified here are defined, we speculate that it may become possible to manipulate the nature of mouse immune responses by re-introducing, under controlled circumstances, some of the natural infectious exposures that constitute the selective pressures that shaped the mouse immune system. This may partially humanize murine immune responses.

![Figure 3. Comparison of Metagenes from Co-infected and Mock Mice with Pet Store-Raised and Laboratory-Raised Mice](image-url)
Figure 4. Co-infected Mice Have Parallel Gene Expression with Human Maternal Blood, whereas Mock Mice Have Parallel Gene Expression with Human Cord Blood

Enrichment analysis of co-infected d0 versus mock d0 metagene (type I interferon response) and mock versus co-infected d0 metagene (naive lymphocyte) in human maternal and cord blood array data.

identified for d0 co-infected relative to d0 mock and vice versa. Enrichments of co-infected and mock metagenes in pet store versus laboratory mouse (GEO: GSE78979), cohoused versus laboratory mouse (GEO: GSE78979) (Beura et al., 2016), and adult PBMC versus cord PBMC array data (GEO: GSE27272) (Votavova et al., 2011) were determined using standard GSEA.

ACKNOWLEDGMENTS

We acknowledge Darren Krealmeyer for mouse colony management; E. Pearce and S. Huang for H. polygyrus parasites; B. Parikh and W. Yokoyama for MCMV; J. Brien and M. Diamond for YFV-17D; and the Genome Technology Access Center at Washington University for microarrays. A core funded by NIH P30AR048355 provided experimental support. NIH awards R24 OD019179, R01 OD011170, R01 AI111918, and R01 DK101354 supported H.W.V. Damon Runyon Postdoctoral Fellowship supported T.A.R.

Received: March 3, 2016
Revised: March 22, 2016
Accepted: April 1, 2016
Published: April 20, 2016

REFERENCES

